金悦城JYC蓄电池GP80-12 12V80AH型号及参数
金悦城蓄电池补充充电
1、如果长时间不使用车辆或充电系统有故障,当蓄电池负载电压低于10V,空载电压低于12.4V必须补充充电;
2、采风恒电限流充电方法,多只蓄电池充电必须采用串联连接;
3、充电阶段,以蓄电池容量的1/10电流充电,其充电电流为6A。充电至平均每只电池电压达到16A后转为第二阶段充电;
4、充电第二阶段,以蓄电池容量x0.045的电流充电,如6-QW-60蓄电池,充电电流为60x0.045=2.7A。充电至平均每只电池电压达到16V后再继续充3-5个小时;
5、充电时电解液温度超过40度时,应采取停止充电,减少电流或物理降温,当温度达到45度时必须停止充电;
6、充电间保证良好通风,不许有明火和易燃物;
7、充足电标准,电眼为绿色。
金悦城电池安装注意事项:
⒈蓄电池应离开热源和易产生火花的地方,其安全距离应大于0.5m。
⒉蓄电池应避免阳光直射,不能置于大量放射性、红外线辐射、紫外线辐射、有机溶剂气体和腐蚀气体的环境中。
⒊安装地面应有足够的承载能力。
⒋由于电池组件电压较高,存在电击危险,因此在装卸导电连接条时应使用绝缘工具,安装或搬运电池时应戴绝缘手套、围裙和防护眼镜。电池在安装搬运过程中,只能使用非金属吊带,不能使用钢丝绳等。5.脏污的连接条或不紧密的连接均可引起电池打火,甚至损坏电池组,因此安装时应仔细检查并清除连接条上的脏污,拧紧连接条。
⒍不同容量、不同性能的蓄电池不能互连使用,安装末端连接件和导通电池系统前,应认真检查电池系统的总电压和正、负极,以保证安装正确。
⒎电池外壳,不能使用有机溶剂清洗,不能使用二氧化碳灭火器扑灭电池火灾,可用四氯化碳之类的灭火器具。
⒏蓄电池与充电器或负载连接时,电路开关应位于“断开”位置,并保证连接正确:蓄电池的正极与充电器的正极连接,负极与负极连接。
蓄电池应用领域与分类:
◆ 免维护无须补液; UPS不间断电源;
◆ 内阻小,大电流放电性能好; 消防备用电源;
◆ 适应温度广; 安全防护报警系统;
◆ 自放电小; 应急照明系统;
◆ 使用寿命长; 电力,邮电通信系统;
◆ 荷电出厂,使用方便; 电子仪器仪表;
◆ 安全防爆; 电动工具,电动玩具;
◆ 独特配方,深放电恢复性能好; 便携式电子设备;
◆ 无游离电解液,侧倒仍能使用; 摄影器材;
◆ 产品通过CE,ROHS认证,所有电池 太阳能、风能发电系统;
符合国家标准。 巡逻自行车、红绿警示灯等。
金悦城蓄电池特点
1、凤凰蓄电池安全性能好:正常使用下无电解液漏出,无电池膨胀及破裂。电池放电性能好:放电电压平稳,放电平台平缓。
2、电池耐震动性好:完全充电状态的电池完全固定,以4mm的振幅,16.7HZ的频率震动1小时,无漏液,无电池膨胀及破裂,开路电压正常。
4、耐冲击性好:完全充电状态的电池从20CM高处自然落至1CM厚的硬木板上3次无漏液,无电池膨胀及破裂,开路电压正常。
5、耐过放电性好:25摄氏度,完全充电状态的电池进行定电阻放电3星期(电阻只相当于该电池1CA放电要求的电阻),恢复容量在75%以上.
6、耐充电性好:25摄氏度,完全充电状态的电池0.1CA充电48小时,无漏液,无电池膨胀及破裂,开路电压正常,容量维持率在上 95%以.
7、耐大电流性好:完全充电状态的电池2CA放电5分钟或10CA放电5秒钟。无导电部分熔断,无外观变形。
8、高压缩玻璃棉吸液式(AGM)技术。
9、内藏防爆装置,采用超声波焊接技术加强蓄电池的密闭性。
详细参数: 特点: 免维护无须补液内阻小,大电流放电性能好适应温度广(-35-45℃) 自放电小使用寿命长(8-10年) 荷电出厂,使用方便安全防爆独特配方,深放电恢复性能好无游离电解液,侧倒90度仍能使用
金悦城JYC蓄电池GP80-12 12V80AH型号及参数
除了电芯自身产生的热量,还有来自环境——也就是电芯所在的动力电池系统的热量。
系统在不同的应用工况下的工作过程中,也会产生大量的热,聚集在狭小的电池箱体内。热量如果不能够及时地**散出,也会影响系统内的电池寿命,甚至出现热失控,导致电芯起火爆炸等。
特斯拉的车型,以长续航里程为特点,也是不断提高电芯能量密度实现的。
目前特斯拉所采用的三元NCA电芯,由于能量密度高,在针刺测试时,会剧烈燃烧,和其他电芯比,自然不算好。而且从材料性质上来看,三元电池的分解温度要低于磷酸铁锂,在同样的高温环境下,发生热失控的几率要高于磷酸铁锂。因此,特斯拉电池热失控的原因,可以从电芯本身和外部环境两块来看。后者对前者又会有一定的影响。
2、热失控的产生原因
特斯拉这起自燃不是起电动汽车起火,也不会是-后一起。
从这几年发生的电动汽车的安全事故来看,原因主要集中在外部撞击形成针刺挤压或者密封失效浸水,高温环境下热集中和过充放电过程,电芯本身漏液等,伴随电芯内部的短路造成热失控。在研究电动汽车自燃案例过程中,可以看到充放电原因造成的热失控不在少数。
锂离子动力电池在发生热失控的过程中,随着温度不断升高将会依次经历以下的过程,并不是一个瞬间就完成的过程:高温容量衰减→SEI 膜分解→负极-电解液反应→隔膜熔化过程→正极分解反应→电解质溶液分解反应→负极与粘接剂反应→电解液燃烧等。